
two-phase flow, in N/m2; G is the mass flow rate of the gas, in kg/sec; G s is the mass flow 
rate of the granular material, in kg/sec; p = Gs/G is the mass concentration; ~ is the volume 
concentration of the solid phase; p is the gas density, in kg/m3; Ps is the true density 
of the solid-phase material, in kg/m3; U is the average cross-sectional velocity of the 
carrier gas, in m/sec; U s is the average solid-particle velocity, in m/sec; D is the pipe 
diameter, in m; L is the pipe length, in m; and U, is the critical velocity, in m/sec. The 
superscript "0" corresponds to Pw = 0 and the subscript "0" corresponds to the pure gas. 
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UNSTEADY MASS TRANSFER TO DROPS IN LIQUID FLOW FOR APPRECIABLY 

DIFFERENT DIFFUSION COEFFICIENTS OF THE CONTINUOUS 

AND DISPERSE GAS PHASES 

A. I. Moshinskii UDC 532.72 

Problems of unsteady convective heat and mass exchange between drops and a li- 
quid flow are analyzed under a boundary condition of the "thermal capacitance" 
type. This condition is substantiated by the method of small perturbations. 

Introduction. Problems of unsteady convective heat and mass exchange between drops 
(particles) and a liquid flow represent the least-studied and most-complicated area in the 
theory of processes of this class [I, 2]. It has been shown that the phenomenon has several 
characteristic stages [3, 4], and the necessary transfer equations have been provided [i, 
5], which has made it possible to systematize the results achieved in this area for a number 
of situations of practical importance. 

For analysis of the problem of heat- and mass-exchange interaction of drops with the 
surrounding medium, researchers are forced to resort to simplifications and to make certain 
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assumptions about the formulation of the principal factors that determine the mathematical 
model of the process. Here, we shall use at the phase-contact surface a boundary condition 
of the "thermal capacitance" type [6-8]. Since intuitive premises are often employed in 
formulations of such a condition, we shall present a possible version of its derivation 
as applied to the class of problems in question on the basis of methods described elsewhere 
[8, 91. 

I. Boundary Condition of "Thermal Capacitance" Type. We shall examine unsteady con- 
vective heat and mass exchange between drops and a continuous medium when the diffusion 
coefficient of the object material (below, for definiteness, we shall deal only with mass 
exchange) in the carrier medium DI is appreciably smaller than the diffusion coefficient 
D 2 in a drop (K = DI/D2 << i). In dimensionless variables, the corresponding boundary-value 
problem has the form 

OcelOt + Pe (viv) c a + k~:~ (c~) ---- hc~; ( 1 )  

• [OcdOt + Pe (v~v) c2 + k2w.~ (c~)] ~- h q ;  ( 2 )  

c~l~.~-+O; c~=O, c,,=c.(r) for t=O; (3) 

C~ = f (Ci), xOci/On = OcJOn on y, (4) 

c i = C d C , ,  k~=K~a~/Da, i =  1, 2; 

Pe = ua/D~, t ---- Dff/a ~. 

We shall assume that the velocity fields inside a drop,v2, and outside, vl, are known (in gen- 
eral, unsteady) and have scales of the same order of magnitude. The drop shape will be 
considered unchanged with time. It is clear that for nonzero but constant ci values, the 
problem is easily reduced to (1)-(4) when r + ~ and t = 0. 

In derivation of the "thermal capacitance" condition, we shall assume that the dimen- 
sionless parameters k I, k2, and Pe are independent of K and have a units order of magnitude. 
In the equations derived below, further simplifications can be undertaken in certain limit- 
ing situations (for example, Pe + ~). The first limit expansion (in K for K + 0) should 
not be forgotten, i.e., such (repeated) light passages do not always yield valid results. 

Assuming that the parameter K is small, we seek a solution of problem (1)-(4) in the 
form of an expansion 

o • (r, t) • (r, t) . . . .  = 2, cj=c~(r, t )+  + + i 1, (5) 

after whose substitution into (i) and (2) we obtain the following equations: 

&V/at + Pe (v~v) c? + k~wz (c~) = Ac?; ( 6 )  

Ac~ ~ 0; Ac~ = Oc~/Ot -t- Pe(v2v ) c~ -}- k~w2(c~), ( 7 )  

the number of which is sufficient for our purposes. We also have 

oc /o  = 0, = f(c?); o  /on = oc?/on on v. (8) 

From Eq. (7) for c2 ~ and the corresponding boundary condition (8), it follows that c2 ~ is 
a function only of time. Then, we integrate the second Eq. (7) over the drop volume and 
use the Ostrogradskii-Gauss theorem and condition (8). As a result, we find 

0 t Oc? ds at f ( c ~ ) + k = w , [ f r  On on y ( 9 )  

which is the desired condition of the "thermal capacitance" type. 

Since (9) contains a derivative with respect to time of a surface function (cl ~ on 
~), information on the initial value of this quantity is required. Note that expansions 
(5) are external [i0, ii], which indicates their suitability at sufficiently large time 
values. This also corresponds to the intuitive picture of the process [6, 7], when it is 
assumed that the temperature (concentration) is quickly equalized within the capacitance. 
Note also that the scales of the variables of the external problem, for which boundary con- 
dition (9) serves, are also of practical interest. An internal expansion that has the form 
of (5) at fixed "internal time" t = t/K is used to derive the initial condition for (9). In 

0. a zeroth approximation in K, we have the following problem for the function c a 
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a ? / a t - -  -0 = Ac~; ac~/anl,~ o, c~ - -  c,(r), (10)  
where the overbar indicates quantities that relate to the internal problem. The following 
relations are sufficient for our purposes (joining with the solution of the external prob- 
lem) : 

d .[ c~ = 0 =>- [ c~dV .= .i" c. (r)dV, (11) 
d {  v v v 

which  were  o b t a i n e d  a f t e r  i n t e g r a t i o n  o f  (10)  o v e r  t h e  e n t i r e  d r o p  vo lume  and u s e  o f  t h e  
O s t r o g r a d s k i i - G a u s s  t h e o r e m .  Us ing  t h e  p r i n c i p l e  o f  l i m i t  j o i n i n g  [10 ,  11] in  t h e  s e c o n d  
expression of (ii) with allowance for the fact that c ~ is not a function of the space coordi- 

nates and bearing in mind the corresponding condition (8), we find ~ ~ ]irnc ~ 
~-~ ,~ t-~O 

1 
f (C?) = --V-- .t' C. (r) dV a t  t = 0 on V. ( 12 ) 

v 

Thus, the problem of a zeroth approximation in the parameter K for the function cz ~ 
is completely formulated. This is Eq. (6), which coincides with the starting equation (i), 
and auxiliary conditions (9) and (12), as well as 

s = O, C?lr~= -->" O, ( 1 3 )  

i.e., we obtain a single-phase rather than a two-phase problem. Below, dealing only with 
the function cz ~ we shall omit its subscript and superscript. 

2. Method for Solution of Problems (6), (9), (12), and (13) at w I = c I. To solve 
this problem, we can use the results obtained by analysis of (6) and (13) with the boundary 
condition c[y = i, which corresponds to diffusion conditions of surface reaction. A number 
of studies have been devoted to this problem, whose results we shall use below in the exam- 
ination of examples. But now we shall assume that the required solution is known. In addi- 
tion, if the goal is finding only the average Sherwood number or the dependence on time 
of the amount of object component in a drop, it will be sufficient to have information on 
the Sherwood number in the problem with a constant boundary value for c. 

According to the results of Sec. i, the concentration on the surface c[y is a function 
only of time, which we shall call G(t). Then a solution of problem (6) for a first-order 
volume reaction, (13) and cly= G(t), as is easily obtained by the operational method, has 
the form 

0 t 

c - .[ 0 (~) c '  ( r ,  t - -  ~) d~, 
0 

where c'  corresponds to the problem at  G = 1, i . e . ,  a known f u n c t i o n .  
ative with respect to the normal and substituting the result into (9), we find 

d d t 
--dr f l~ (O] + k~w~ {f [G (t)]} -- at io ~O(~)t(t ~)d~, (15) 

where l=--V-~J(Oc'/On)ds is the integrated flux of material for the auxiliary problem. Equa- 
s 

tion (15) complements condition (12), where it can be assumed without loss of generality 
that the right side is equal to unity: fiG(0)] = i [or specify G(0) = I]. 

In the case of linear functions f and w=, f(c) = ~c and wi(c) = c, which is the solution 
of Eq. (15) under the initial condition ~GIt= 0 = i, is easily found by the operational method 
and can be expressed by the Riemann-Mellin integral 

1 exp (pt) dp 
G (t) - -  2r~i J" k~ @ p [o~ q- l* (p)] ' (16)  

where  p i s  t h e  L a p l a c e - t r a n s f o r m  v a r i a b l e ,  and t h e  s u p e r s c r i p t  a s t e r i s k  i n d i c a t e s  t r a n s -  
fo rmed  v a l u e s .  I n t e g r a t i o n  i s  p e r f o r m e d  in  (16 )  a l o n g  t h e  l i n e  R e p  = B , ,  which  l i e s  t o  t h e  
r i g h t  o f  a l l  s i n g u l a r  p o i n t s  o f  t h e  i n t e g r a n d .  The s e c o n d  v e r s i o n ,  when Eq. (15)  can  be 
s i m p l y  i n t e g r a t e d ,  i s  t h e  q u a s i - s t e a d y  c a s e .  I n  t h i s  c a s e ,  t h e  c o n c e n t r a t i o n  f i e l d  o u t s i d e  
t h e  d r o p  and ,  t h e r e f o r e ,  t h e  f l u x  o f  m a t e r i a l  a r e  d e t e r m i n e d  by t h e  s t e a d y  e q u a t i o n .  For  

(14) 

Calculating the deriv- 
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example, this is realized when Pe ~ ~ ~ a boundary-laNer approximation with the introduc- 
tion of "extended" variables N = n'Pe I- and T = t'Pe 172. In a zeroth approximation in 
Pe -I/2, we have an unsteady relation (9) (in the absence of a source term) and a steady 
Eq. (6), where the chemical reaction at k I = O(i) with respect to Pe -I/2 is insignificant 
in the main approximation as well. A "faster" time variable T' = t/Pc results in an un- 
steady Eq. (6), but the thermal-capacitance condition in this case gives 8c/8T' = 0 on u 
i.e., we arrive at the often examined problem with c = const on the drop surface. In order 
to use the thermal-capacitance condition in this version within the scope of our derivation, 
it is necessary to satisfy the inequality KPe << i, i.e., that the Peclet number be small 
for D 2 (inside the drop) and large for D I. 

The quasi-steady case is obtained from (14) and (15) as the "fast time" limit, which 
corresponds to practically instantaneous (in the adopted time scale) transition of the solu- 
tion of the auxiliary problem to steady conditions. In (14) and (15), in this case, prac- 
tically over the entire integration interval, c' = const(t) and I = const(t), which result, 
respectively, in the formulas 

c = (~ (0 c '  (r), 

df [0 (t)l/dt + k#,.. {[ [G (t)]} = - -  0 (t) I. 

which could also be obtained directly without consideration of time intervals. 
of Eq. (18) has a simple quadrature 

~(o) 
t = j" ['~dG/{IG + k2w2 [[ (G)]}. 

(7 

(17) 

(18) 

The solution 

( 1 9 )  

Note that in the case in question I = const > 0 and at kiw 2 e 0, the integrand of (19) does 
not have singular points. In this case, G < G(0) is a monotone decreasing function. A 
solution of the entire problem is given by formulas (17) and (19) in parametric form in 
terms of the parameter G. 

The problem is simplified in the absence of a chemical reaction inside the drop: k 2 = 
0. After integration, (15) becomes 

t 

[[G(l)]-- 1 . . . .  ~ G(~)I(t-- ~)d~ (20)  
0 

which is a nonlinear Volterra integral equation, for whose solution effective numerical 
algorithms have been developed [12]. It should be noted that the numerical algorithms for 
determination of the material flux to the drop are fairly complicated for the auxiliary 
problem. Nevertheless, when they have been constructed, it is relatively simple to add 
Eq. (15) to them, since it has no effect on I(t). 

3. Examples. As an example, we shall examine in a boundary-layer approximation the 
mass exchange between a spherical drop and the flow past it with a constant velocity at 
infinity u~. If Stokes flow of the liquid is assumed, it is advisable to take u = u~/(l + 
6) [i], where ~ is the ratio of the viscosity coefficients of the drop and the liquid sur- 
rounding it. The function f will be assumed to be linear: f = ~c; chemical transition 
inside or outside the drop will be ignored. Since in the main approximation the principal 
contribution to the material flux to the drop is made by the region of the diffusion boun- 
dary layer (the contribution of the vicinities of the point of infiltration and the edge 
point, where the equations of the process change form, cannot be taken into account [i]), 
we shall determine the auxiliary function c' (Sec. 2), which corresponds to the condition 
c' = 1 at r = 1 only in that region. Here we can use the method of auxiliary variables 
[I, 13, 14], which makes it easy to obtain an expression for c' [i, 14]: 

c , = e r f c ( / - 3 P e  ( r - - 1 ) ( 1 - - - c o s O ) )  
8 V 2 - - c o s O - a ( o ,  t) ' (21)  

where r, 0 are spherical coordinates (8 = ~ is the point of infiltration); 

a(O, 0 - = 4  3 ( 1 - - ~ ) e x p ( t P e ) + l + ~  , ~=cosO.  (22)  
[(1 - -  ~) exp (t Pe) -[- 1 -~- &]3 
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Calculation of the total material flux I to the drop gives 

l : I ~ h ( t P e ) ,  I s : 4  ~ 2 ~ P e  h(t)=:--3 i (1- -~)d~ 
3 ' 4 _ - V ' 2 - - l z - - a ( ~  , t) 

=i~(+)l-.,. {VO.~..-,~. ..+, ~z[. (~/,_z),. _ 

--' V~I]  (..++) 
x F  arctg z + l '  , z = ~ - c h  ~ -  ( z < l ) .  

(23) 

At z > i, the expression for h(t) should be written as 

__1  h~'~=[sh(~!]'"{,'Oz~4, l~+4.'[ar', V. , 

Vz~t ~ , . . z , ~  4.+1 
- -  4z (z + 1)(2z  + 1) • 

•  

F2-(1 + z) 

i ,/z---~]l 
arctg z---~-,  V ~  J l' 

(24) 

where E(z, ~) and E(z) are an elliptical integral of the second kind and a total elliptical 
integral of the second kind, and F(z, ~ ) is an elliptical integral of the first kind. 

Expressions (23) and (24) are fairly cumbersome for use in calculations. At z = 1 
(t, = 2.63392...), however, these formulas give 

h ~ 3 -3/4 [21/~ + (3/2) arctg (2-I/-~)] = 1,02541 .... (25) 

which makes it possible to check the various approximation formulas used in the literature 
for approximation of the function h(t). For example, for the expansion in powers of t [I] 

- ~ -  1 +  t2 - 7 ta _~ O (tO ) (26) 
1920 

t he  e r r o r  a t  p o i n t  t ,  i s  3.867., For l a r g e  t imes ,  we can o b t a i n  f o r  h ( t )  t he  a s y m p t o t i c  form- 
u l a  

h ( 0 =  l + 3 { 3 t / 2 - - 5 - k ] / 3 - + 3 1 n (  3 - - -1 )}exp ( - -2 t )=  

= 1 +(4,5t- - -12,611)exp(--2t) -~. . . ,  t--~oo. (27) 

At p o i n t  t , ,  t he  e r r o r  of  (27) i s  2.86%, but  the  va lue  of  h i s  l e s s  than u n i t y .  Formula (27) 
is qualitatively suitable at t > t m = 3.30244, when (27) becomes a monotone decreasing func- 
tion. 

Since the example in question corresponds to a boundary-layer approximation (high Pe 
numbers), according to (22), the use of formula (27) will be consistent. If we limit our- 
selves to the first term in (27) (units), we obtain a quasi-steady solution (19). The second 
(unsteady) term in (27) characterizes the transition to a steady solution in the auxiliary 
problem. Allowance for this term provides a correction for (19), for whose construction 
it is advisable to use the inequality Pe >> i. 

After Laplace transforms of (27) and (20) (f = ~G), we arrive at the following expres- 
sion for G*: 

~*~'~={~ .+..e'"6'" +.~.+..e,,9"~ Ii-I ~'~ 
~4V ~ 
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The function G* has three poles in the plane p; at Pe >> i, the values of the first two 
are on the order of Pe(pl,2 = -2Pe), while the third is determined by the expression 

P3 --  - -  @/a)  pe l /2  - -  11,486 (%/a) 2 + O(Pe-I/2), Pe -+  oo, (29)  

i . e . ,  w i t h  c o n v e r s i o n  o f  ( 28 ) ,  t h e  e x p o n e n t i a l  f u n c t i o n  c o r r e s p o n d i n g  to  (29)  w i l l  m a r k e d l y  
dominate at large time values. We have 

G(/) = 1 [ 1 + O (  1 ) ]  ~ . x 

•  - - t  ~ pe ~ / 2 + 1 1 , 4 8 6 _ ~ _ + O ( p e  -~/2) . 
(30) 

Formula (30) defines more accurately formula (19) with the simplifications corresponding 
to the example of allowance in a first approximation of the terms that characterize the 
transition of the mass-exchange process in the auxiliary problem to steady conditions. 

The analysis that was performed pertains to solution of the problem in a boundary-layer 
approximation. At moderate values of the Peclet number, the analytic solution of the auxili- 
ary problem is unknown. However, there exist fairly accurate and simple approximation formu- 
las [15] that can be used in our problem. The relation [15] 

I = l~V-cth(~O, ~ = 2u=a/ t3D~(l  + 6)1, (31)  

gives an error for the flux that does not exceed 1% and is approximately the same (with 
corrections I s and $) for calculation of the material flux to a solid particle. A Laplace 
transform of (31) results in 

l* V ~  I F[p/(4~)] F[p/(4~)+ 1/2]} (32) 
i~ - -  T ~ -  [P[pt(4~)+lt21 + r ip / (4~)+ l t  _" 

By the way, this expression can be used to describe the flow of material to a drop in the 
presence of a volume chemical reaction of the first order [15, p. 56]. A somewhat less 
accurate but simpler formula [15] is 

I ---- I~ [1 --- exp (-- ~t)1-1/2, 
( 3 3 )  

the Laplace transform of which has the form 

I* = I~ I/~ ~-IF (p/~) F -~ (pl~ + 1/2). ( 3 4 )  

Calculation of integral (16) (k 2 = 0) by means of contour integration and the use of 
residue theory lead to the formula 

1 exp (-- "~j~t) ~j tp ~ ~j - -  ~ ( - -  vj) , (35)  
O(t) = V /=1 

where @(z) is the logarithmic derivative of the gamma function [16], and vj are roots of 

the transcendental equation 

y = ~1~1~-  1 / ~ . . . .  F (-- v) F -1 (l/2 - -  v). ( 36 ) 

Curves of the first three roots as functions of the parameter y are shown in Fig. i. Beyond 
the scope of the graphs, we can use the expansion 

/ 

~1+1 = ] + mj /g  - - m ~  {ln 4 - -  E [i (2 / - -  1)]-1}/g ~ + ..., g -~ cr (37)  
i ~ 1  

where mj = 1-3...(2j - l)/~r~2Jj!), j ~ i; m0 = ~-i/2; and the sum in (37) at j = 0 is equal 
to zero. Formula (35) is convenient for calculations at large time values. At small time 
values, we can use the formula 

(38) G(t)  = a -~[1 - -21~a-x ( t /~ ) l / 2 ] ,  t--~-O, 

which was derived by means of the asymptotic function [16] for the function F(z) at z 
- in (16) .  
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First roots of Eq. (36): i) j = i; 
2) 2; 3) 3. 

Formulas (35) and (38) allow the kinetics of the mass content of a drop to be traced 
over a wide range of times. Tables [17] can be used to calculate the function ~(z). Note, 
too, that a solution for the example represented by formulas (31) and (32) is constructed 
similarly. 

4. Comments. The presence in the problem of several dimensionless parameters whose 
values can vary within wide limits gives rise to the problems of special study of various 
limiting versions at K << i and k I, k 2, and Pe >> i, which we shall not treat in detail 
here. The region of expansion nonuniformity can usually be judged after two approxima- 
tions* (in the given case, with respect to the parameter K). Nevertheless, certain state- 
ments can be made concerning the possibility of improvement of the above estimate <Pc << i 
of the validity of use of a boundary-layer approximation when a "thermal capacitance" boun- 
dary condition is used; the relation KPe << 1 can be weakened somewhat in view of the fact 
that the term that is proportional to Pe in (2) does not in the main approximation contri- 
bute to the formation of the thermal-capacitance condition. In fact, if along with Ac2 ~ 
we take this term into account in the first formula of (7), we obtain the equation Ac2 ~ = 
Pe(V2Vc2~ which (with allowance for the boundary condition of the absence of material 
flux), just as earlier, is satisfied by a function only of time. In the next formula of 
(7), such a term is also insignificant after volume integration [see derivation of formula 
(9)], since for an incompressible liquid it is reduced to a surface integral ~V2n'c2~ 
which is equal to zero, since for a drop of unchanged shape we can assume V2n = 0 on 7. 
Thus, the naturally assumed increase in the rote of the term Pe(v2V)c 2 with a rise in the 
Pe number is insignificant for construction of a "thermal capacitance" boundary condition 
in a first approximation. 

The calculation version examined in Sec. 2 refers to an auxiliary problem that is linear 
outside the drop, which made it possible to write the principal equation for the function G(t) 
in the form of (15). In the case of a nonlinear function w1(cl), the integral in (9) can 
also be determined by solution of the auxiliary problem, but in this case it should be as- 
sumed that cll 7 = G(t), where G(t) is an unknown function. The surface integral in (9) be- 
comes a nonlinear functional of G(t), whose form can hardly be established by exact methods. 
In this case, it seems advisable to use new approximation approaches [15, 18] (for example, 
the method of "carry through" of the Laplace transform) to find an analytic representation 
of the integral (of material flux) in (9). 

NOTATION 

a is the characteristic dimension of the drop; CI, C2, C,, and c,(r) are the concen- 
trations of the object component in the flow and in the drop, the concentration scale, and 
the initial value in the drop; c~i(r, t) are components of the expansions of the concentra- 
tions into series in powers of <; erfc(z) is an auxiliary probability integral; f(c) is 
a function that establishes a relationship between the concentrations of the continuous 
and disperse phases at the drop boundary with phase equilibrium; K i and w I (i = i, 2) are 

*On this topic, see, for example Dil'man and Polyanin [15, p. 24], who discuss the nonuni- 
formity of an expansion in Pe -I/2 for a drop at ~ ~ ~. 
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a proportionality factor (dimension scale) and a dimensionless function that characterizes 
the chemical transition; n is the normal coordinate; Pi (i = i, 2, 3) are singular points 
(poles) of the function G*(p) (28); r is a brief notation for the set of space coordinates; 
s is the drop surface; u and u~ are the velocity scale and the liquid velocity at a great 
distance from the drop; ~ is the distribution coefficient; F(z) is Euler's gamma function; 

is the coordinate (equation) of the drop surface; ~ is time; and V is the dimensionless 
drop volume. 
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